
Inverse and Composite Rules

In 2019-20 I have not gone through the following derivation of Theorems

3.1.12 and 3.1.13 hence I would not expect you to know the proofs. I would,

though, expect you to know, and be able to use, the two results.

For a further two rules consider the situation

R
g
−→ R

f
−→ R.

We will write g as a function of y ∈ R and f a function of x ∈ R.

Assume that g is defined on a neighbourhood of k ∈ R, and f is defined on
a neighbourhood of ℓ = g(k). In particular f(g(k)) is defined. Thus

k
g
7−→ g(k) = ℓ

f
7−→ f(ℓ) = f(g(k)) .

Assume that f is differentiable at ℓ. For x in this neighbourhood of ℓ define
the new function

Fℓ(x) =















f(x)− f(ℓ)

x− ℓ
if x 6= ℓ,

df

dx
(ℓ) if x = ℓ.

Then

lim
x→ℓ

Fℓ(x) = lim
x→ℓ

f(x)− f(ℓ)

x− ℓ
=

df

dx
(ℓ) = Fℓ(ℓ) , (1)

and so Fℓ is continuous at x = ℓ.

We can rearrange the first line in the definition of Fℓ (x) as

f(x)− f(ℓ) = Fℓ(x) (x− ℓ) (2)

for x 6= ℓ. But when x = ℓ both sides are zero, i.e. equal, Thus (2) holds for
all x in the neighbourhood of ℓ. Use (2) for those x in the image of g, i.e.
x = g(y) for some y in a neighbourhood of k. Then

f(g(y))− f(g(k)) = Fℓ(g(y)) (g(y)− g(k)) ,

for such y. Our required formula is

f(g(y))− f(g(k))

y − k
= Fℓ(g(y))

(

g(y)− g(k)

y − k

)

, (3)

for y in some deleted neighbourhood of k.

We make two important applications of (3) ; the first is that the inverse
of a differentiable function is differentiable and the second is that the compo-
sition of two differentiable functions is differentiable. You should know both
results from School but only now have you a justification of them.
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Theorem 3.1.12 Inverse Rule Suppose that f(x) is strictly monotonic

and continuous on a closed and bounded interval [a, b] . Write

[c, d] =

{

[f(a) , f(b)] if f is increasing

[f(b) , f(a)] if f is decreasing.

By the Inverse Function Theorem there exists a strictly monotonic, con-

tinuous function g : [c, d] → [a, b] which is the inverse function of f so, if

y = f(x) then x = g(y).

Suppose that f is differentiable at ℓ ∈ (a, b) with df/dx 6= 0 at x = ℓ.
Write k = f(ℓ) so ℓ = g(k) and k ∈ (c, d).

Then g is differentiable at k and

dg(y)

dy

∣

∣

∣

∣

y=k

=
1

df(x)

dx

∣

∣

∣

∣

x=ℓ

, i.e.
dg

dy
(k) =

1

df

dx
(ℓ)

=
1

df

dx
(g(k))

.

If f is differentiable on (a, b) with df/dx 6= 0 at all points of (a, b), then
g is differentiable on (c, d) and

dg(y)

dy
=

1

df(x)

dx

∣

∣

∣

∣

x=g(y)

=
1

df(g(y))

dx

,

for all y ∈ (c, d).

Proof Not given in 2019-20. Because f and g are inverses we have

f(g(y))− f(g(k))

y − k
=

y − k

y − k
= 1

for y ∈ [c, d] , y 6= k and so (3) becomes

Fℓ (g(y))

(

g(y)− g(k)

y − k

)

= 1, (4)

for such y.

We now wish to divide by Fℓ (g(y)) but we can only do so if it is non-zero.
Yet, as the inverse of a continuous function, g(y) is continuous at y = k. We
have noted above that Fℓ (x) is continuous at x = ℓ = g(k). Hence, by the
Composite Rule for continuous functions, Fℓ (g(y)) is continuous at y = k.
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Therefore, the limit of this function at k equals the value of the function at
k, i.e.

lim
y→k

Fℓ (g(y)) = Fℓ (g(k)) = Fℓ (ℓ) =
df

dx
(ℓ) , (5)

by (1) .

By Lemma 3.1.8 if the value of a continuous function is non-zero at a point
k then the function is non-zero in some neighbourhood of k. An assumption
of the present theorem is that df/dx 6= 0 at x = ℓ, i.e.

lim
y→k

Fℓ (g(y)) 6= 0.

Thus there exists δ > 0 such that if k − δ < y < k + δ then Fℓ (g(y)) 6= 0.
For such y we get, from (4) ,

g(y)− g(k)

y − k
=

1

Fℓ (g(y))
.

Then use the Quotient Rule for limits, along with (5) to deduce

lim
y→k

g(y)− g(k)

y − k
=

1

limy→k Fℓ (g(y))
=

1

df

dx
(ℓ)

.

Since the limits exists g is differentiable at x = k with derivative shown. �

Example 3.1.13 of Inverse Rule. Prove that

d

dy
ln y =

1

y

for all y > 0.

Solution Here g(y) = ln y, which has been defined as the inverse of the
strictly monotonic, continuous function f(x) = ex. We know that f ′(x) = ex

so
d

dy
ln y =

dg(y)

dy
=

1

df

dx
(x)

∣

∣

∣

∣

x=g(y)

=
1

ex|x=ln y

=
1

y
,

as required. �

Our second application of (3) is within
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Theorem 3.1.14 Chain or Composite Rule If g (y) is differentiable at

y = k and f (x) is differentiable at x = g (k) then (f ◦ g) (y) is differentiable
at y = k and

d (f ◦ g)

dy
(k) =

df

dx
(g (k))

dg

dy
(k) .

Proof Not given in 2019-20 Let y → k in

f(g(y))− f(g(k))

y − k
= Fℓ(g (y))

(

g(y)− g(k)

y − k

)

,

where ℓ = g(k). We need to use the Product Rule for limits on the right
hand side which requires knowing that both

lim
y→k

Fℓ(g(y)) and lim
y→k

g(y)− g(k)

y − k

exist. The second limit exists since we are told g (y) is differentiable at y = k.

To show the first limit exists we use the Composition Rule for continuous
functions. This requires g (y) to be continuous at y = k, which follows since
g is differentiable there, and Fℓ (x) to be continuous at x = g (k) , which
followed from (1). The Composite Rule then gives

lim
y→k

Fℓ(g(y)) = Fℓ

(

lim
y→k

g(y)

)

= Fℓ(ℓ) =
df

dx
(ℓ) .

Hence the Product Rule (allowable since all limits exist) can be used to
give

lim
y→k

f(g (y))− f(g (k))

y − k
= lim

y→k
Fℓ(g (y)) lim

y→k

(

g(y)− g(k)

y − k

)

=
df

dx
(ℓ)

dg

dy
(k) by (1)

=
df

dx
(g (k))

dg

dy
(k) since ℓ = g (k) .

�

Note there is a common mistake made by far too many students attempting to

prove the Chain Rule. See the Appendix for details.
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Though we have been careful in the proof and statement to consider f
as a function of x and g a function on y, in use we think of g and f as both
functions of x and write

d (f ◦ g)

dx
(x) =

df

dx
(g(x))

dg

dx
(x) , i.e. (f ◦ g)′(x) = f ′(g(x)) g′(x) ,

for all x for which f ′(g(x)) and g′(x) exist.

Example 3.1.15 of Composite Rule. For y > 0 and α ∈ R we defined

yα = eα ln y. Prove, using this definition, that

d

dy
yα = αyα−1,

for all y > 0.

Solution In the notation of the Chain Rule Theorem we have f(x) = ex =
exp (x) and g(y) = α ln y, so

f(g(y)) = exp (g (y)) = exp (α ln y) = yα.

We know that

df

dx
(x) = ex = exp (x) and

dg

dy
(y) =

α

y

by Lemmas 3.1.4 and 3.1.13 respectively. Hence

d

dy
yα =

d (f ◦ g)

dy
(y) =

df

dx
(g(y))

dg

dy
(y) = exp (g(y))

α

y
= yα

α

y
= αyα−1

as required. �

Though we have been careful in the proof and statement to consider f as
a function of x and g a function on y, in applications we think of g and f as
both functions of x and write

d (f ◦ g)

dx
(x) =

df

dx
(g(x))

dg

dx
(x) , i.e. (f ◦ g)′(x) = f ′(g(x)) g′(x) ,

for all x for which f ′(g(x)) and g′(x) exist.
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